Self-Training Guide



If you are new to nTop Platform or looking to solidify the basics, this article is the place to start. Follow along to go through a series of recommended articles and tutorials to get up and running at your own pace.


1. Get Set Up and Download the Program

Watch this video to learn how to set up your nTopology account, download the latest release of the program, and install the software. 

If you are having issues on this step, check out the Licensing Guide and the  Account Troubleshooting Guide. If problems still persist, write a Support Ticket and our Support Team will help you get it sorted out. 


2. Start Creating

Now that the program is downloaded, it's time to jump in and see how nTop Platform runs. Follow along with this video to gain a feel for the program and practice the basics. 



3. The User Interface


Let's take a tour of the User Interface by watching this video. Next, it's time to learn some details about blocks. The first video describes how blocks function and how to use them, while the second video teaches you about their properties and potential error messages. 


4. Importing Geometry

Watch this video to learn the different methods of importing data and geometry into nTop. 

nTop Platform is capable of importing many types of design, engineering, and simulation data. This article is a summary of the file types we support.


5. Build a Basic Workflow


Once we feel comfortable with the User Interface and using some basic operations, it's time to create a basic workflow using some imported geometry. Follow this video to create a shelled and filled part using Toolkits. 

What's a Toolkit? A toolkit is a built-in Custom block (a collection of blocks working together) that make repeatable processes faster and simpler. You can create your own Custom blocks and import them into the program. Curious as to what operations the Toolkit is running? Right-click on one and select 'Export Toolkit' to open up the nTop Notebook. 

Next, let's take a look at repeating this workflow using standard blocks instead of Toolkits. Using standard blocks gives you more control over the process, allowing you to learn more about all the steps involved. It's very useful to understand the underlying building blocks before creating your own Custom block. 


6. Turn the Basic Workflow into a Repeatable Workflow

Now that we feel comfortable with our shelled and filled workflow, let's turn our workflow into a Custom block by following this tutorial. This process can be replicated for any workflow you create, enabling you to package complex processes into a simple block. 


7. Working with CAD Parts

We imported and worked with CAD parts in the previous lessons. These tutorials will cover the same methods, diving a little deeper on how to work with CAD parts.

CAD bodies can be converted into our Implicit data type easily, shown in this article. Once a part is converted into an Implicit format, any of the Boolean Operations, Lattices, and other functions can be applied to the geometry.

Some workflows only require the surface of a CAD part as an input. When multiple CAD faces need to be selected and joined into a single surface, this workflow may be used.


8. Creating Lattices


Lattices are a powerful tool in nTop and we can do many processes with them, as seen in the Shell and Fill example. 

Surface lattices (conformal lattices) can be built from CAD faces directly, as shown here. We can use the same workflow to easily create an example of structural ribbing. It's possible to create stochastic surface lattices, shown here. This workflow can be paired with surface texturing workflows and the ramping block, shown in further sections. 

Learn a new method of creating lattices by using Beta blocks. This lesson introduces the new workflow for you, which is different from the previous examples we've seen here. Take a look at additional Beta blocks in this article and this one


9. Using Ramps and Field Driven Design 

Variable properties, such as dimensions, may be applied to geometries using the Ramp Block. This article introduces the Ramp Block in greater detail. For example, point spacing can be driven geometrically using the Ramp Block, shown here, as well as lattice thickness that is driven by field data in this example


10. Exporting Geometry

Now that we understand how to use quite a few processes, it's time to learn how to export that geometry out of nTop. This lesson teaches you the main methods of exporting your parts. 

This article summarizes the types of files nTop can output. Meshes are a common type and we can export STL, OBJ, 3mf, or PLY formats. Learn how to mesh and export Implicit bodies in this tutorial

When possible, we recommend slicing the Implicit Body directly and sending the slices to your printer. This tutorial shows you how to slice your geometry and export the slices in a number of formats.

nTop Platform is also capable of exporting Implicit or Mesh parts to STEP or Parasolid formats. Topology optimization workflows produce the most useful results, but the same process applies to more complex geometry as well. An example is shown here. Keep in mind that exceedingly faceted geometry and periodic structures are challenging for STEP and Parasolid file formats.


11. Meshing Techniques


Before moving on to more advanced topics, like Simulation and Topology Optimization, it's important to learn and understand the best methods for meshing your part. Depending on the complexity, features, and size, the methods you choose for meshing may differ. 

This guide covers the popular blocks used for meshing. This article goes into more detail for common meshing workflows. Take a look at this collection of articles for more meshing tips. 


12. Preparing for Analysis

Now that we know how to create a mesh, we need to prepare it for analysis by creating a Finite Element Mesh (FE Mesh) and a Finite Element Model (FE Model). These are the stepping stones for Simulation and Topology Optimization. 


13. Running a Simulation

Once the FE Mesh and FE Model are created, you have to select regions of the FE Mesh to choose the areas where Boundary Conditions are acting upon. Take a look at this article for more information on using the other selection method, FE Boundary by Flood Fill. 

In this tutorial, you learn how to perform a static analysis starting with an FE Model and Boundary Conditions. This example will show you how to use the results of the static analysis in your part geometry. 


14. Topology Optimization

Topology Optimization (TopOpt) is a numerical design operation that determines the optimal shape of a part based on a set of objectives and constraints. TopOpt allows the user to design geometries that best achieve the desired objective while considering complex and multivariate design constraints. Learn how to run a TopOpt in this tutorial. Solidify the process by checking out this example file to optimize a bracket. 

Additional Content: Topology Optimization: Settings, Topology Optimization: Geometric Constraints, Topology Optimization: Using Multiple Objectives


15. Introduction to Texturing 


nTop Platform has an unprecedented range of tools to produce unique, field-driven surface textures. For example, this article shows how to create a Voronoi Surface Texture on chosen CAD faces. This next tutorial creates a knurled texture. Lastly, check out this video to learn how to texture using a Toolkit. 


If you've followed along to this point, we hope you have a solid foundation in nTop Platform and are ready to go and explore. Be sure to check out various tutorialsexample files, and nTop Live content to get inspired by what you can create!



cad mesh simulation ramp texture field lattice part list meshing export tpms create driven static analysis started how to learn beginner lists shell user interface design fe topology fill start model optimization texturing training command line onboard onboarding get self train 
Was this article helpful?
0 out of 0 found this helpful



Article is closed for comments.